
The SELECT Statement

The SELECT statement is used primarily to retrieve specific data. A SELECT
statement can be simple or complex—complex is not necessarily better. Try to make
your SELECT statements as simple as possible while still retrieving the results you
need. For example, if you need data from only two columns of a table, include only
those two columns in the SELECT statement to minimize the amount of data that
must be returned.

After you have decided what data you need from which tables, you can determine
which other options, if any, you should use. These options can include specifying
which columns should be in the WHERE clause to make use of your indexes,
specifying whether the returned data should be sorted, and specifying whether you
want only distinct values returned.

Let's begin by examining the various options for the SELECT statement and
reviewing examples of each. The sample databases used in these examples, pubs and
Northwind, will be needed to run these examples. To familiarize yourself with the
pubs and Northwind databases, use SQL Server Management Studio to examine these
database tables.

The syntax for the SELECT statement consists of several clauses, most of which are
optional. A SELECT statement must include at least a SELECT clause and a FROM
clause. These two clauses identify which column or columns of data to retrieve and
from which table or tables to retrieve the data, respectively. For example, a simple
SELECT statement to retrieve the authors' first and last names from the authors table
in the pubs database might look like this:

SELECT au_fname, au_lname

FROM authors

SELECT au_fname, au_lname

FROM authors

NOTE

Because keywords are not case sensitive, you can use any

capitalization system you want. It's a good idea to be

consistent just to make your code easier to read. For this

reason, the examples in these notes use uppercase letters for

keywords.

When you run the SELECT statement interactively—for example, using SQL Query
Analyzer - the results are displayed in columns, with column headings for clarity.

The SELECT Clause

The SELECT clause consists of a required select list and possibly some optional
arguments. The select list is the list of expressions or columns that you specify in the
SELECT clause to indicate which data should be returned. The optional arguments
and the select list are described in this section.

Arguments

The following two arguments can be used in the SELECT clause to control which
rows are returned:

 DISTINCT Returns only unique rows. If the select list contains several columns, the rows will
be considered unique if the corresponding values in at least one of the columns differ. For
two rows to be duplicates, they must contain identical values in every column.

 TOP n [PERCENT] Returns only the first n rows from the result set. If PERCENT is specified,
only the first n percent of the rows are returned. When PERCENT is used, n must be between
0 and 100. If the query includes an ORDER BY clause, the rows are ordered first and then the
first n or first n percent are returned from the ordered result set. (ORDER BY clauses are
described in the section The ORDER BY Clause a bit later)

The following T-SQL code shows our sample SELECT statement run three times,
each time with a different argument. The first query uses the DISTINCT argument,
the second query uses the TOP 50 PERCENT argument, and the third query uses the
TOP 5 argument.

SELECT DISTINCT au_fname, au_lname

FROM authors

SELECT TOP 50 PERCENT au_fname, au_lname

FROM authors

SELECT TOP 5 au_fname, au_lname

FROM authors

The first query returns 23 rows, each of which is unique. The second query returns 12
rows (approximately 50 percent, rounded up), and the third query returns 5 rows.

The Select List

As mentioned, the select list is the list of expressions or columns that you specify in
the SELECT clause to indicate which data should be returned. An expression can be a
list of column names, functions, or constants. The select list can include several
expressions or column names, separated by commas. The preceding examples use the
following select list:

file:///C:/Users/shoaib/Documents/ch14b.htm

au_fname, au_lname

The *, or Wildcard Character You can use the asterisk (*), or wildcard character, in
the select list to return all columns from all tables and views named in the FROM
clause of the query. For example, to return all columns of all rows from the sales table
in the pubs database, use the following query:

SELECT *

FROM sales

GO

The section Cross Joins later describes what happens when more than one table is
listed in the FROM clause of a SELECT statement that contains the wildcard
character.

Column Aliases Using a column alias in the select list allows you to specify the
column heading that you want to appear in the result set. You can use an alias to
clarify the meaning of the data in an output column, to assign a heading to a column
that is used in a function, and to refer to an ORDER BY clause.

When two or more columns with the same name exist in different tables, you might
want to include the table name in the column heading of the output for clarity. For an
example using a column alias, let's look at the lname column in the employee table of
the pubs database. You could issue the following query:

SELECT lname

FROM employee

If you made such a query, you would get the following results:

lname

Cruz

Roulet

Devon

O'Rourke

Ashworth

Latimer

(43 rows affected)

To display the heading "Employee Last Name" instead of the original heading, lname,
in the result set (to emphasize the fact that the last name is from the employee table),
use the AS keyword, as shown here:

SELECT lname AS "Employee Last Name"

FROM employee

The output from this command is shown here:

Employee Last Name

Cruz

Roulet

Devon

O'Rourke

Ashworth

Latimer

(43 rows affected)

You can also use a column alias with other types of expressions in the select list and
as a reference column in an ORDER BY clause. Suppose you have a function call in
the select list. To assign a column alias that describes the output from the function,
use the AS keyword after the function call. If you do not use an alias with a function,
there will be no column heading at all. For example, the following statement assigns
the column heading "Maximum Job ID" for the output of the MAX function:

SELECT MAX(job_id) AS "Maximum Job ID"

FROM employee

The column alias is enclosed in quotation marks because it contains multiple words
with spaces between them. If the alias does not include spaces, you do not have to
enclose it in quotation marks, as you'll see in the next example.

You can reference a column alias that was assigned in the SELECT clause as an
argument in the ORDER BY clause. This technique is useful when the select list
contains a function whose results need to be sorted. For example, the following
command retrieves the quantity of books sold at each store and sorts the output by
quantity. The alias assigned in the select list is used in the ORDER BY clause.

SELECT SUM(qty) AS Quantity_of_Books, stor_id

FROM sales

GROUP BY stor_id

ORDER BY Quantity_of_Books

In this case, we did not enclose the alias in quotation marks because it contains no
spaces.

If we had not assigned a column alias for SUM(qty) in this query, we could have used
SUM(qty) instead of the alias in the ORDER BY clause. This technique, shown in the
next example, will provide the same output, but with no column heading for the sum
column:

SELECT SUM(qty), stor_id FROM sales

GROUP BY stor_id

ORDER BY SUM(qty)

Remember that a column alias is used to assign a heading to a column for output
purposes; it does not affect the results of the query in any way.

The FROM Clause

The FROM clause contains the names of the tables and views from which the data is
pulled. Every SELECT statement requires a FROM clause, except when the select list
contains no column names—only constants, variables, and arithmetic expressions.
You've already seen some simple examples of the FROM clause, but FROM clauses
can also contain derived tables, joins, and aliases.

Derived Tables

A derived table is the result set from a SELECT statement nested in the FROM clause.
The result set of the nested SELECT statement is used as a table from which the outer
SELECT statement selects its data. The following query uses a derived table to find
the names of any stores that honor at least one type of discount:

SELECT s.stor_name

FROM stores AS s, (SELECT stor_id, COUNT(DISTINCT discounttype)

AS d_count

FROM discounts

GROUP BY stor_id) AS d

WHERE s.stor_id = d.stor_id AND

d.d_count >= 1

If you run this command, you should see one row selected, which means that only one
store in the database, Bookbeat, offers any discount.

Notice that this query uses shorthand for the table names (s for the stores table and d
for the discounts table). This shorthand, called a table alias, is described in the section
Table Aliases later.

file:///C:/Users/shoaib/Documents/ch14b.htm

Joined Tables

A joined table is a result set from the join operation performed on two or more tables.
Several types of joins can be performed on tables: inner joins, full outer joins, left
outer joins, right outer joins, and cross joins. Let's look at each of these joins in detail.

Inner Joins An inner join is the default join type; it specifies that only table rows
matching the ON condition should be included in the result set and that any
unmatched rows should be discarded. To specify a join, use the JOIN keyword. Use
the ON keyword to identify the search condition on which to base the join. The
following query joins the stores and discounts tables to show which stores offer a
discount and the type of discount. (By default, this is an inner join, which means that
only rows matching the ON search condition are returned.)

SELECT s.stor_id, d.discounttype

FROM stores s JOIN discounts d

ON s.stor_id = d.stor_id

The result set looks like this:

stor_id discounttype

------- -------------------

8042 Customer Discount

As you can see, only one store offers a discount, and it has only one type of discount.
The only row returned is the one whose stor_id from the stores table has a matching
stor_id from the discounts table. That particular stor_id and its associated
discounttype are returned.

Full Outer Joins A full outer join specifies that the unmatched rows (rows that do not
meet the ON condition) as well as the matched rows (rows that meet the ON condition)
should be included in the result set. For unmatched rows, NULL will appear in the
column that did not match. In this example, NULL means either that a store did not
offer any discount, and thus it has a stor_id value in the stores table but not in the
discounts table, or that a type of discount in the discounts table is not offered by any
store. The following query uses the same query as the preceding inner join, but this
time, we will specify FULL OUTER JOIN:

SELECT s.stor_id, d.discounttype

FROM stores s FULL OUTER JOIN discounts d

ON s.stor_id = d.stor_id

The result set looks like this:

stor_id discounttype

------- ------------------

NULL Initial Customer

NULL Volume Discount

6380 NULL

7066 NULL

7067 NULL

7131 NULL

7896 NULL

8042 Customer Discount

Only one of the results rows shows a match—the last row. The other rows have NULL
in one column.

Left Outer Joins A left outer join returns the matching rows plus all the rows from
the table that is specified to the left of the JOIN keyword. Using the same query, we
specify LEFT OUTER JOIN this time, as shown here:

SELECT s.stor_id, d.discounttype

FROM stores s LEFT OUTER JOIN discounts d

ON s.stor_id = d.stor_id

The result set looks like this:

stor_id discounttype

------- --

6380 NULL

7066 NULL

7067 NULL

7131 NULL

7896 NULL

8042 Customer Discount

This result set includes the rows from the stores table that had no matching stor_id
value in the discounts table. (The discounttype column for those rows is NULL.) The
result set also includes the one row that matched the ON condition.

Right Outer Joins A right outer join is the opposite of a left outer join: it returns the
matching rows plus all the rows from the table specified to the right of the JOIN
keyword. Here is the same query with RIGHT OUTER JOIN specified:

SELECT s.stor_id, d.discounttype

FROM stores s RIGHT OUTER JOIN discounts d

ON s.stor_id = d.stor_id

The result set looks like this:

stor_id discounttype

------- -------------------

NULL Initial Customer

NULL Volume Discount

8042 Customer Discount

This result set shows the rows from the discounts table that do not have a matching
stor_id value in the stores table. (The stor_id column for those rows is NULL.) The
result set also shows the one row that matched the ON condition.

Cross Joins A cross join is the product of two tables when no WHERE clause is
specified. When a WHERE clause is specified, the cross join acts like an inner join.
Without a WHERE clause, all rows and columns will be returned from both tables in
the following manner: each row from the first table will be matched with each row
from the second table, so the size of the result set will be the number of rows in the
first table multiplied by the number of rows in the second table.

To understand a cross join, let's start with some new examples. First we'll look at a
cross join without a WHERE clause, and then we'll look at three examples of cross
joins that include WHERE clauses. The following queries show a simple example.
Run the three queries and note the number of rows that result from each.

SELECT *

FROM stores

SELECT *

FROM sales

SELECT *

FROM stores CROSS JOIN sales

NOTE

If you include two tables in the FROM clause, the effect is

the same as specifying CROSS JOIN, as in the following

example:

SELECT *

FROM stores, sales

To avoid this jumble of information (if it is more than we need), we can add a
WHERE clause to narrow the query, as in the following statement:

SELECT *

FROM sales CROSS JOIN stores

WHERE sales.stor_id = stores.stor_id

This statement returns only the rows that match the search condition in the WHERE
clause, which narrows the result set to 21 rows. The WHERE clause forces a cross
join to act the same as an inner join. (That is, only rows matching the search condition
are returned.) The preceding query returns the rows in the sales table, concatenated
with the rows from the stores table that have the same stor_id value. Rows that do not
contain a match are not returned.

To further narrow the result set, you can specify from which table to select all rows
and columns by adding the table name before the asterisk (*), as in the following
query. You can also specify to which table a column belongs by inserting the table
name and a dot (.) before any column name.

SELECT sales.*, stores.city

FROM sales CROSS JOIN stores

WHERE sales.stor_id = stores.stor_id

This query returns all the columns from the sales table, with the city column from the
stores table row that has the same stor_id value appended. In effect, the result set
includes the city of the store where the sale was made appended to the rows in the
sales table that have a matching stor_id value in the stores table.

Here is the same query without the * symbol; only the stor_id column will be selected
from the sales table:

SELECT sales.stor_id, stores.city

FROM sales CROSS JOIN stores

WHERE sales.stor_id = stores.stor_id

Table Aliases

We've already looked at several examples in which a table name alias was used.
Specifying the AS keyword is optional. (FROM tablename AS alias gives the same
result as FROM tablename alias.) Let's look again at the query from the "Right Outer
Joins" section, which used aliases:

SELECT s.stor_id, d.discounttype

FROM stores s RIGHT OUTER JOIN discounts d

ON s.stor_id = d.stor_id

Each of the two tables has a stor_id column. To distinguish which table's stor_id
column you are referring to in the query, you must supply the table name or an alias
followed by a dot (.) and then the column name. In this example, the alias s is used for
the stores table, and d is used for the discounts table. When specifying a column, we
must add s. or d. before the column name to indicate which table contains it. The
same query with the AS keyword included looks like this:

SELECT s.stor_id, d.discounttype

FROM stores AS s RIGHT OUTER JOIN discounts AS d

ON s.stor_id = d.stor_id

The WHERE Clause and Search Conditions

You can use the WHERE clause to restrict the rows that are returned from a query,
according to the search conditions specified. In this section, we'll examine many of
the operations that can be used in the search condition.

NOTE

Search conditions are used not only in WHERE clauses for the

SELECT statement, but they are also used in UPDATE and DELETE

statements. (The UPDATE and DELETE statements will be covered

later.)

First let's review some terminology. The search condition can contain an unlimited
number of predicates joined by the logical operators AND, OR, and NOT. A
predicate is an expression that returns a value of TRUE, FALSE, or UNKNOWN. An
expression can be a column name, a constant, a scalar function (a function that returns
one value), a variable, a scalar subquery (a subquery that returns one column), or a
combination of these elements joined by operators. In this section, the term
"expression" refers to predicates and expressions.

Comparison Operators

The equality and nonequality operators that can be used with expressions are listed in
the table below.

Table: Comparison operators

Operator Condition Tested

= Tests for equality between two expressions

<> Tests whether two expressions are not equal to each other

!=
Tests whether two expressions are not equal to each other (same

as <>)

> Tests whether one expression is greater than the other

>= Tests whether one expression is greater than or equal to the other

!> Tests whether one expression is not greater than the other

< Tests whether one expression is less than the other

<= Tests whether one expression is less than or equal to the other

!< Tests whether one expression is not less than the other

A simple WHERE clause might compare two expressions by using the equality
operator (=). For example, the following SELECT statement tests the value in the
lname column for each row, which is of the char data type, and returns TRUE if the
value is equal to "Latimer." (The rows that return TRUE will be included in the result
set.)

SELECT *

FROM employee

WHERE lname = "Latimer"

In this case, the query returns one row. The name Latimer must be enclosed in
quotation marks because it is a character string.

The following query uses the not equal operator (<>), this time with an integer data
type column, job_id:

SELECT job_desc

FROM jobs

WHERE job_id <> 1

GO

This query will return the job description text from the row or rows in the jobs table
that have a job_id value not equal to 1. In this case, 13 rows are returned. If a row has
a value of NULL, it does not equal 1 or any other value, so rows with null values will
be returned as well.

Logical Operators

The logical operators AND and OR test two expressions and return a Boolean value
of TRUE, FALSE, or UNKNOWN, depending on the results from the two expressions.
The NOT operator negates the Boolean value returned by an expression that follows
it.

The following query uses two expressions in the WHERE clause with the AND
logical operator:

SELECT job_desc, min_lvl, max_lvl

FROM jobs

WHERE min_lvl >= 100 AND

max_lvl <= 225

In the next query, an OR operation tests for publishers in either Washington, D.C. or
Massachusetts. A row will be returned if either of the tests returns TRUE for that row.

SELECT p.pub_name, p.state, t.title

FROM publishers p, titles t

WHERE p.state = "DC" OR

p.state = "MA" AND

t.pub_id = p.pub_id

This query returns 23 rows.

The NOT operation simply returns the negation of the value of the Boolean
expression that follows it. For example, to return all book titles for which an author's
royalties were not less than 20 percent, you could use the NOT operator in the
following manner:

SELECT t.title, r.royalty

FROM titles t, roysched r

WHERE t.title_id = r.title_id AND NOT

r.royalty < 20

This query returns the 18 titles for which royalties were equal to or greater than 20
percent.

Other Keywords

In addition to the operators described in the preceding sections, a variety of T-SQL
keywords can be used in a search condition. The most commonly used keywords are
explained in this section, and examples of their use are given.

LIKE The LIKE keyword indicates pattern matching in a search condition. Pattern
matching is testing for a match between a match expression and the pattern specified
in the search condition, using the following syntax:

<match_expression> LIKE <pattern>

If the match expression matches the pattern, a Boolean value of TRUE is returned.
Otherwise, FALSE is returned. The match expression must be of the character string

data type. If it is not, SQL Server will convert it to the character string data type, if
possible.

Patterns are really string expressions. A string expression is defined as a string of
characters and wildcard characters. Wildcard characters are characters that take on
special meanings when used in a string expression. Table below lists the wildcard
characters that can be used in patterns.

Table : T-SQL Wildcard characters

Wildcard

Character
Description

% Percent symbol; matches a string of zero or more characters

_ Underscore; matches any single character

[]

Range wildcard character; matches any single character within

the range or set, such as [m–p] or [mnop], meaning any of the

characters m, n, o, or p

[^]

Not-in-range wildcard character; matches any single character

not within the range or set, such as [^m–p] or [^mnop], meaning

any character other than m, n, o, or p

To get a better understanding of using the LIKE keyword and wildcard characters,
let's look at some examples. To find all last names in the authors table that begin with
the letter "S," you could use the following query with the % wildcard character:

SELECT au_lname

FROM authors

WHERE au_lname LIKE "S%"

The result set will look like this:

au_lname

—————

Smith

Straight

Stringer

In this query, "S%" means return all rows that contain a last name beginning with "S,"
followed by any number of characters.

To retrieve the information for an author whose ID starts with the number 724,
knowing that each ID is formatted like a social security number (three digits, followed
by a dash, followed by two digits, then another dash, and finally four digits), you
could use the _ wildcard character, as follows:

SELECT *

FROM authors

WHERE au_id LIKE "724-_ _-_ _ _ _"

The result set will contain two rows, with au_id values of 724-08-9931 and
724-80-9391.

Now let's look at an example that uses the [] wildcard. To retrieve the last names of
authors starting with "A" through "M," you could use the [] wildcard along with the %
wildcard character, as shown here:

SELECT au_lname

FROM authors

WHERE au_lname LIKE "[A-M]%"

The result set will contain 14 rows of names beginning with "A" through "M" (13, if
you are using a case-sensitive sort order).

If we perform a similar query but use the [^] wildcard in place of the [] wildcard
character, we will get rows that contain last names that start with letters other than
"A" through "M," as shown here:

SELECT au_lname

FROM authors

WHERE au_lname LIKE "[^A-M]%"

This query returns nine rows.

If you are using a case-sensitive sort order and you want to find all names that fall
into a range without regard to case, you could use a query that checks for a lowercase
or an uppercase first letter, as shown here:

SELECT au_lname

FROM authors

WHERE au_lname LIKE "[A-M]%" OR

au_lname LIKE "[a-m]%"

This result set will include the name "del Castillo," whereas a case-sensitive query
that checked for only uppercase "A" through "M" would not.

The LIKE keyword can also be preceded by the NOT operator. NOT LIKE returns
rows that do not match the condition specified. For example, to select titles that do not
start with the word "The," you could use NOT LIKE in the following query:

SELECT title

FROM titles

WHERE title NOT LIKE "The %"

This query returns 15 rows.

You can be creative when using the LIKE keyword. But be careful to test your queries
to be sure they are returning the data you expect. If you leave out a NOT or a ^
character when you meant to include one, your result set will be the opposite of what
you desired. Failing to include the % wildcard character when it is needed will cause
incorrect results also. And remember that leading and trailing spaces are also matched
exactly.

ESCAPE The ESCAPE keyword enables you to perform pattern matching for the
wildcard characters themselves, such as ^, %, [, and _. Following the ESCAPE
keyword, you specify the character you want to use as the escape character, which
signals that the following character in the string expression should be matched
literally. For example, to search for all rows in the titles table that have an underscore
in the title column, you would use the following query:

SELECT title

FROM titles

WHERE title LIKE "%e_%" ESCAPE "e"

This query returns no rows because no titles in the database include an underscore.

BETWEEN The BETWEEN keyword is always used with AND and specifies an
inclusive range to test for in a search condition. The syntax is shown here:

<test_expression> BETWEEN <begin_expression> AND <end_expression>

The result of the search condition will be the Boolean value TRUE if test_expression
is greater than or equal to begin_expression and is also less than or equal to
end_expression. Otherwise, the result will be FALSE.

The following query uses BETWEEN to find all the book titles that have a price
between $5 and $25:

SELECT price, title

FROM titles

WHERE price BETWEEN 5.00 AND 25.00

This query returns 14 rows.

You can also use NOT with BETWEEN to find rows that are not in the specified
range. For example, to find the book titles whose prices are not between $20 and $30
(meaning that their prices are less than $20 or greater than $30), you would use the
following query:

SELECT price, title

FROM titles

WHERE price NOT BETWEEN 20.00 AND 30.00

When you use the BETWEEN keyword, test_expression must have the same data
type as begin_expression and end_expression.

In the preceding example, the price column has the data type money, so
begin_expression and end_expression must each be a number that can be compared
with or implicitly converted to the money data type. You could not use price as
test_expression and then use a character string (of the char data type) for
begin_expression and end_expression. If you did, SQL Server would return an error
message.

Our last example involving the BETWEEN keyword uses strings in a search condition.
To find authors' last names that fall alphabetically between the names "Bennet" and
"McBadden," you would use the following query:

SELECT au_lname

FROM authors

WHERE au_lname BETWEEN "Bennet" AND "McBadden"

Because the BETWEEN range is inclusive, the results of this query will include the
names "Bennet" and "McBadden," which do exist in the table.

IS NULL The IS NULL keyword is used in a search condition to select rows that
have a null value in the specified column. For example, to find the book titles in the
titles table that have no data in the notes column (that is, the value for notes is NULL),
you would use the following query:

SELECT title, notes

FROM titles

WHERE notes IS NULL

The result set looks like this:

title notes

—————————————————— ———

The Psychology of Computer Cooking NULL

As you can see, the null value in the notes column appears as NULL in the result set.
NULL is not the actual value in the column—it simply indicates that a null value
exists in that column. (Recall a null value is an unknown value.)

To find the titles that do have data in the notes column (titles for which the value of
notes is not a null value), use IS NOT NULL, as follows:

SELECT title, notes

FROM titles

WHERE notes IS NOT NULL

All of the 17 rows in the result set will have one or more characters in the notes
column and therefore do not have null values in the notes column.

IN

The IN keyword is used in a search condition to determine whether the given test
expression matches any value in a subquery or list of values. If a match is found, a
value of TRUE is returned. NOT IN returns the negation of the result for IN, and
therefore, if the test expression is not found in the subquery or the list of values,
TRUE is returned. The syntax is as follows:

<test_expression> IN (<subquery>)

or

<test_expression> IN (<list of values>)

A subquery is a SELECT statement that returns only one column in the result set. The
subquery must be enclosed in parentheses. A list of values is just that, with the values
enclosed in parentheses and separated by commas. The column resulting from either
the subquery or the list of values must have the same data type as test_expression.
SQL Server will perform implicit conversion when necessary.

You could use IN with a list of values to find the job ID numbers of three specific job
descriptions, as in the following query:

SELECT job_id

FROM jobs

WHERE job_desc IN ("Operations Manager",

"Marketing Manager",

"Designer")

The list of values in this query is as follows: (";Operations Manager", "Marketing
Manager", "Designer"). The query returns the job IDs from rows that have one of
these three values in the job_desc column. The IN keyword makes your query simpler
and easier to read and understand than if you had used two OR operators, as shown
here:

SELECT job_id

FROM jobs

WHERE job_desc = "Operations Manager" OR

job_desc = "Marketing Manager" OR

job_desc = "Designer"

The following query uses the IN keyword twice in one statement-once for a subquery
and once for a list of values within the subquery:

SELECT fname, lname —Outer query

FROM employee

WHERE job_id IN (SELECT job_id —Inner query, or subquery

FROM jobs

WHERE job_desc IN ("Operations Manager",

"Marketing Manager",

"Designer"))

The subquery result set is found first-in this case, a set of job_id values. The job_id
values resulting from the subquery are not returned to the screen; the outer query uses
them as the expression for its own IN search condition. The final result set will
contain the first and last names of all employees whose job titles are Operations
Manager, Marketing Manager, or Designer. Here is the result set:

fname lname

—————————— ———————————————

Pedro Afonso

Lesley Brown

Palle Ibsen

Karin Josephs

Maria Larsson

Elizabeth Lincoln

Patricia McKenna

Roland Mendel

Helvetius Nagy

Miguel Paolino

Daniel Tonini

(11 rows affected)

IN can also be used with the NOT operator. For example, to return the names of all
publishers not located in California, Texas, or Illinois, run the following query:

SELECT pub_name

FROM publishers

WHERE state NOT IN ("CA",

"TX",

"IL")

This query will return five rows whose state column value is not one of the three
states in the list of values. If you have the database option ANSI nulls set to ON, the
result set will contain only three rows. This reduction is because two of the five rows
from the original result set will have NULL as the state value, and NULLs are not
selected when ANSI nulls is set to ON.

To determine your ANSI nulls setting for the pubs database, run the following system
stored procedure:

sp_dboption "pubs", "ANSI nulls"

If ANSI nulls is set to OFF, change the value to ON by using the following statement:

sp_dboption "pubs", "ANSI nulls", TRUE

To change the value from ON to OFF, use FALSE in place of TRUE.

EXISTS The EXISTS keyword is used to test for the existence of rows in the
subquery that follows. The syntax is shown here:

EXISTS (<subquery>)

If any rows satisfy the subquery, TRUE is returned.

To select names of authors who have already published a book, you could use the
following query:

SELECT au_fname, au_lname

FROM authors

WHERE EXISTS (SELECT au_id

FROM titleauthor

WHERE titleauthor.au_id = authors.au_id)

Authors whose names are in the authors table but who have not published a book
listed in the titleauthor table will not be selected. If no rows had been selected in the
subquery, the result set for the outer query would be empty. (Zero rows would be
selected.)

The GROUP BY Clause

GROUP BY is used after the WHERE clause to indicate that the result set rows
should be grouped according to the grouping columns specified. If an aggregate
function is used in the SELECT clause, an aggregate summary value is calculated for
each group and shown in the output. (An aggregate function performs a calculation
and returns a value; these functions are described in detail in the section Aggregate
Functions later.)

NOTE

Every column in the select list-except for columns used in

an aggregate function-must be specified in the GROUP BY

clause as a grouping column; otherwise, SQL Server will

return an error message.

GROUP BY is most useful when an aggregate function is included in the SELECT
clause. Let's take a look at a SELECT statement that uses the GROUP BY clause to
find the total number sold of each book title:

SELECT title_id, SUM(qty)

FROM sales

GROUP BY title_id

The result set looks like this:

title_id

———— —————

BU1032 15

BU1111 25

BU2075 35

BU7832 15

MC2222 10

MC3021 40

PC1035 30

PC8888 50

PS1372 20

PS2091 108

PS2106 25

file:///C:/Users/shoaib/Documents/ch14c.htm
file:///C:/Users/shoaib/Documents/ch14c.htm

PS3333 15

PS7777 25

TC3218 40

TC4203 20

TC7777 20

(16 rows affected)

This query does not contain a WHERE clause-you do not need one. The result set
shows a title_id column and a summary column with no heading. For each distinct
title ID, the total number sold of that title appears in the summary column. For
example, the title_id value BU1032 appears twice in the sales table-it appears once
showing 5 sales in the qty column, and it appears again showing 10 sales for a
different order. The SUM aggregate function adds these two sales to arrive at the total
sales figure of 15, which appears in the summary column. To add a heading to your
summary column, use the AS keyword, as shown here:

SELECT title_id, SUM(qty) AS "Total Sales"

FROM sales

GROUP BY title_id

Now the result set will show the heading "Total Sales" over the summary column:

title_id Total Sales

———— —————

BU1032 15

BU1111 25

BU2075 35

BU7832 15

MC2222 10

MC3021 40

PC1035 30

PC8888 50

PS1372 20

PS2091 108

PS2106 25

PS3333 15

PS7777 25

TC3218 40

TC4203 20

TC7777 20

(16 rows affected)

You can nest groups by including more than one column in the GROUP BY clause.
Nesting groups means that the result set will be grouped by each of the grouping

columns in the order in which the columns are specified. For example, to find the
average price for book titles that are grouped by type and then by publisher, run the
following query:

SELECT type, pub_id, AVG(price) AS "Average Price"

FROM titles

GROUP BY type, pub_id

The result set looks like this:

type pub_id Average Price

—————— ——— ————————————

business 0736 2.99

psychology 0736 11.48

UNDECIDED 0877 NULL

mod_cook 0877 11.49

psychology 0877 21.59

trad_cook 0877 15.96

business 1389 17.31

popular_comp 1389 21.48

(8 rows affected)

Notice that the psychology and business types occur more than once because they are
grouped under different publisher IDs. The NULL average price for the UNDECIDED
type reflects that no prices were inserted into the table for that type, and therefore, no
average could be calculated.

GROUP BY provides an optional keyword, ALL, that specifies that all groups should
be included in the result set, even if they do not meet the search condition. The groups
that do not have rows that meet the search condition will contain a NULL in the
summary column so that they can be easily identified. For example, to show the
average price for books that have a royalty of 12 percent (and also show books that do
not, which will have NULL in the summary column) and to group the books by type
and then by publisher ID, run the following query:

SELECT type, pub_id, AVG(price) AS "Average Price"

FROM titles

WHERE royalty = 12

GROUP BY ALL type, pub_id

The result set looks like this:

type pub_id Average Price

—————— ——— ————————————

business 0736 NULL

psychology 0736 10.95

UNDECIDED 0877 NULL

mod_cook 0877 19.99

psychology 0877 NULL

trad_cook 0877 NULL

business 1389 NULL

popular_comp 1389 NULL

(8 rows affected)

All types are present in the output and NULL appears for the types that do not have a
book with a commission of 12 percent.

If we now remove the keyword ALL, the result set will contain only types that have a
book with a 12 percent commission, as shown here:

type pub_id Average Price

—————— ——— ————————————

psychology 0736 10.95

mod_cook 0877 19.99

(2 rows affected)

The GROUP BY clause is often accompanied by the HAVING clause, which is
covered next.

The HAVING Clause

The HAVING clause is used to specify a search condition for a group or an aggregate
function. HAVING is most commonly used after a GROUP BY clause for cases in
which a search condition must be tested after the results are grouped. If the search
condition can be applied before the grouping occurs, it is more efficient to place the
search condition in the WHERE clause than to add a HAVING clause. This technique
reduces the number of rows that must be grouped. If there is no GROUP BY clause,
HAVING can be used only with an aggregate function in the select list. In this case,
the HAVING clause acts the same as a WHERE clause. If HAVING is not used in
either of these ways, SQL Server will return an error message.

The syntax for the HAVING clause is as follows:

HAVING <search_condition>

Here, search_condition has the same meaning as the search conditions described in
the section The WHERE Clause and Search Conditions earlier. One difference

file:///C:/Users/shoaib/Documents/ch14b.htm

between the HAVING clause and the WHERE clause is that the HAVING clause can
include an aggregate function in the search condition, but the WHERE clause cannot.

NOTE

You can use aggregate functions in the SELECT clause and in

the HAVING clause, but you can't use them in the WHERE clause.

The following query uses the HAVING clause to select the types of books per
publisher that have an average price greater than $15:

SELECT type, pub_id, AVG(price) AS "Average Price"

FROM titles

GROUP BY type, pub_id

HAVING AVG(price) > 15.00

The result set looks like this:

type pub_id Average Price

—————— ——— ————————————

psychology 0877 21.59

trad_cook 0877 15.96

business 1389 17.31

popular_comp 1389 21.48

(4 rows affected)

You can also use logical operators with the HAVING clause. Here, the AND operator
has been added to our query:

SELECT type, pub_id, AVG(price) AS "Average Price"

FROM titles

GROUP BY type, pub_id

HAVING AVG(price) >= 15.00 AND

AVG(price) <= 20.00

The result set looks like this:

type pub_id Average Price

—————— ——— ————————————

trad_cook 0877 15.96

business 1389 17.31

(2 rows affected)

You could get the same results by using the BETWEEN clause instead of just AND,
as shown here:

SELECT type, pub_id, AVG(price) AS "Average Price"

FROM titles

GROUP BY type, pub_id

HAVING AVG(price) BETWEEN 15.00 AND 20.00

To use HAVING without a GROUP BY clause, you must have an aggregate function
in the select list and in the HAVING clause. For example, to select the sum of the
prices for books of type mod_cook only if the sum is greater than $20, run the
following query:

SELECT SUM(price)

FROM titles

WHERE type = "mod_cook"

HAVING SUM(price) > 20

GO

If you try to put the expression SUM(price) > 20 in the WHERE clause, SQL Server
will return an error message. (Aggregate functions are not allowed in the WHERE
clause.)

NOTE

Remember, the only time you can use the HAVING clause is when

you add a search condition to test the resultant groups from

a GROUP BY clause or to test an aggregate function. Otherwise,

you should specify the search condition in the WHERE clause.

The ORDER BY Clause

The ORDER BY clause is used to specify the order in which the rows in a result set
should be sorted. You can specify either ascending (from lowest to highest) or
descending (from highest to lowest) order by using the keywords ASC or DESC.
Ascending order is the default if no order is specified. You can specify more than one
column in the ORDER BY clause. The results will be ordered by the first column
listed. If the first column contains duplicate values, those rows will be ordered
according to the second column listed, and so on. This ordering makes more sense
when ORDER BY is used with GROUP BY, as you'll see later in this section. First
let's look at an example that uses one column in the ORDER BY clause to list authors
by last name, in ascending order:

SELECT au_lname, au_fname

FROM authors

ORDER BY au_lname ASC

The result set will be ordered alphabetically by last name. Remember that the case
sensitivity of the sort order you set when installing SQL Server will affect how last
names such as "del Castillo" will be ordered.

If you want to sort results on more than one column, simply add the column names,
separated by commas, to the ORDER BY clause. The following query selects job IDs
and employee first names and last names and then displays them ordered by job ID,
then last name, and then first name:

SELECT job_id, lname, fname

FROM employee

ORDER BY job_ifd, lname, fname

The result set looks like this:

job_id lname fname

——— ——————————————— —————————

2 Cramer Philip

3 Devon Ann

4 Chang Francisco

5 Henriot Paul

5 Hernadez Carlos

5 Labrune Janine

5 Lebihan Laurence

5 Muller Rita

5 Ottlieb Sven

5 Pontes Maria

6 Ashworth Victoria

6 Karttunen Matti

6 Roel Diego

6 Roulet Annette

7 Brown Lesley

7 Ibsen Palle

7 Larsson Maria

7 Nagy Helvetius

13 Accorti Paolo

13 O'Rourke Timothy

13 Schmitt Carine

14 Afonso Pedro

14 Josephs Karin

14 Lincoln Elizabeth

(43 rows affected)

The sort on first names in this query doesn't affect the result set because no two
employees have the same last name and the same job ID.

Now let's take a look at an ORDER BY clause with a GROUP BY clause and an
aggregate function:

SELECT type, pub_id, AVG(price) AS "Average Price"

FROM titles

GROUP BY type, pub_id

ORDER BY type

The result set looks like this:

type pub_id Average Price

—————— ——— ————————————

UNDECIDED 0877 NULL

business 0736 2.99

business 1389 17.31

mod_cook 0877 11.49

popular_comp 1389 21.48

psychology 0736 11.48

psychology 0877 21.59

trad_cook 0877 15.96

(8 rows affected)

The results are sorted in alphabetical order (ascending) by type. Also, notice that in
this query, both type and pub_id must be in the GROUP BY clause because they are
not part of an aggregate function. If you had left the pub_id column out of the
GROUP BY clause, SQL Server would have displayed an error message.

You cannot use aggregate functions or subqueries in the ORDER BY clause.
However, if you had given an alias to an aggregate in the SELECT clause, you could
use it in the ORDER BY clause, as shown here:

SELECT type, pub_id, AVG(price) AS "Average Price"

FROM titles

GROUP BY type, pub_id

ORDER BY "Average Price"

The result set looks like this:

type pub_id Average Price

—————— ——— ————————————

UNDECIDED 0877 NULL

business 0736 2.99

psychology 0736 11.48

mod_cook 0877 11.49

psychology 0877 21.59

trad_cook 0877 15.96

business 1389 17.31

popular_comp 1389 21.48
(8 rows affected)

Now the results are ordered by average price. NULL is considered lowest in the sort
order, so it is at the top of the list.

	The SELECT Statement
	The SELECT Clause
	Arguments
	The Select List

	The FROM Clause
	Derived Tables
	Joined Tables
	Table Aliases

	The WHERE Clause and Search Conditions
	Comparison Operators
	Logical Operators
	Other Keywords

	The GROUP BY Clause
	The HAVING Clause
	The ORDER BY Clause

